Даны точки A (-3;5) и B(4;2).
Примем координаты точки М(х; у).
Вектор АМ = ((х + 3); (у - 5)), вектор ВМ = ((х - 4); (у - 2)),
Длина АМ = √(((х + 3)² + (у - 5)²) = √(x² + 6x + 9 + y² - 10y + 25),
Длина BМ = √(((х - 4)² + (у - 2)²) = √(x² - 8x + 16 + y² - 4y + 4).
По условию задания:
3*√(x² + 6x + y² - 10y + 34) = √(x² - 8x + y² - 4y + 20).
Возведём в квадрат.
9*(x² + 6x + y² - 10y + 34) = x² - 8x + y² - 4y + 20.
9x² + 54x + 9y² - 90y + 306 = x² - 8x + y² - 4y + 20.
8x² + 62x + 8y² - 86y + 286 = 0.
Сократим на 8.
x² + (31/4)x + y² - (43/4)y + (143/4) = 0.
Выделим полные квадраты и получаем уравнение окружности:
(x + (31/8))² + (y - (43/8))² = 261/32.
Центр окружности О = (-31/8); (43/8)), радиус R = 2,855915.
Объяснение:
∠DEK опирается на диаметр DK большой окружности.
∠ОВК опирается на диаметр ОК малой окружности.
Все вписанные углы, опирающиеся на диаметр, прямые. Следовательно,
∠DEK = ∠ОВК = 90°. Из этого следует, что
DE ⊥EK и АВ ⊥ЕК.
Теорема: если две прямые на плоскости перпендикулярны одной и той же прямой, то они параллельны. Значит, DE ║ АВ, ч.т.д.
б) Так как DE ║ АВ, то ∠ВОК = ∠ЕDК как соответственные.
Диаметр АВ ⊥ЕК. Если хорда перпендикулярна диаметру, то диаметр проходит через её середину, т.е.
ЕС = СК и т. В - середина дуги ЕК и, следовательно,
DB - биссектриса ∠EDK прямоугольного ΔDEK.
Теорема: Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон, т.е.
ЕL : LK = DE : DK = cos(∠KDE) = cos(∠KOB) = √(1 - sin²(∠KOB) =
= √1 -7/16 = √9/16 = 3/4
Даны точки A (-3;5) и B(4;2).
Примем координаты точки М(х; у).
Вектор АМ = ((х + 3); (у - 5)), вектор ВМ = ((х - 4); (у - 2)),
Длина АМ = √(((х + 3)² + (у - 5)²) = √(x² + 6x + 9 + y² - 10y + 25),
Длина BМ = √(((х - 4)² + (у - 2)²) = √(x² - 8x + 16 + y² - 4y + 4).
По условию задания:
3*√(x² + 6x + y² - 10y + 34) = √(x² - 8x + y² - 4y + 20).
Возведём в квадрат.
9*(x² + 6x + y² - 10y + 34) = x² - 8x + y² - 4y + 20.
9x² + 54x + 9y² - 90y + 306 = x² - 8x + y² - 4y + 20.
8x² + 62x + 8y² - 86y + 286 = 0.
Сократим на 8.
x² + (31/4)x + y² - (43/4)y + (143/4) = 0.
Выделим полные квадраты и получаем уравнение окружности:
(x + (31/8))² + (y - (43/8))² = 261/32.
Центр окружности О = (-31/8); (43/8)), радиус R = 2,855915.
Объяснение:
∠DEK опирается на диаметр DK большой окружности.
∠ОВК опирается на диаметр ОК малой окружности.
Все вписанные углы, опирающиеся на диаметр, прямые. Следовательно,
∠DEK = ∠ОВК = 90°. Из этого следует, что
DE ⊥EK и АВ ⊥ЕК.
Теорема: если две прямые на плоскости перпендикулярны одной и той же прямой, то они параллельны. Значит, DE ║ АВ, ч.т.д.
б) Так как DE ║ АВ, то ∠ВОК = ∠ЕDК как соответственные.
Диаметр АВ ⊥ЕК. Если хорда перпендикулярна диаметру, то диаметр проходит через её середину, т.е.
ЕС = СК и т. В - середина дуги ЕК и, следовательно,
DB - биссектриса ∠EDK прямоугольного ΔDEK.
Теорема: Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон, т.е.
ЕL : LK = DE : DK = cos(∠KDE) = cos(∠KOB) = √(1 - sin²(∠KOB) =
= √1 -7/16 = √9/16 = 3/4