Дан прямоугольник АВСД. Через точку К, принадлежащую стороне АВ провели плоскость, параллельную стороне АД, которая пересекает диагональ ВД в точке М. Найдите периметр треугольника АВД, если известно, что АК=3 см, КВ=6 см, ВМ=10см
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Сечение FA1C1D- прямоугольник, т.к. грани , содержащие стороны А1F и C1D параллельны между собой и перпендикулярны основанию. Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина) Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6. FH=FE*sin (60°) DF=2*FН=2*(6√3):2=6√3 cм А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора) S A1C1DF= 10*6√3=60√3 см² Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA Его синус равен A1A:A1F=8:10=0,8, а градусная величина приблизительно 53°
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42
Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина)
Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6.
FH=FE*sin (60°)
DF=2*FН=2*(6√3):2=6√3 cм
А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора)
S A1C1DF= 10*6√3=60√3 см²
Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA
Его синус равен A1A:A1F=8:10=0,8, а градусная величина
приблизительно 53°