Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
В треугольнике АВС АО=ОС. Следовательно, треугольник АОС - равноберденный. В треугольниках АОВ и ВОС равны две стороны АО и ОС и ВО - общая, и угол между ними. Поэтому треугольники АОВ=ВОС. АВ=ВС, а треугольник АВС - равнобедренный. Угол А= углу С Угол В равен 180-55*2=70 градусов Точка О равноудалена от вершин треугольника АВС. Следовательно, О находится на биссектрисе равнобедренного треугольника. Биссектриса равнобедренного треугольника является и его медианой и высотой. А высота - перпендикуляр к основанию АС, будучи одновременно медианой, она является и срединым перпендикуляром к стороне АС.
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
В треугольнике АВС АО=ОС. Следовательно, треугольник АОС - равноберденный.
В треугольниках АОВ и ВОС равны две стороны АО и ОС и ВО - общая, и угол между ними. Поэтому треугольники АОВ=ВОС.
АВ=ВС, а треугольник АВС - равнобедренный.
Угол А= углу С
Угол В равен
180-55*2=70 градусов
Точка О равноудалена от вершин треугольника АВС. Следовательно, О находится на биссектрисе равнобедренного треугольника. Биссектриса равнобедренного треугольника является и его медианой и высотой. А высота - перпендикуляр к основанию АС, будучи одновременно медианой, она является и срединым перпендикуляром к стороне АС.