Дана прямая призма ABCKLN, AC=CB=18см; ∢ACB=D°;∢LCB=U°. Вычисли объём призмы (Между функциями знак умножения и пробел не ставь, sin или cos пиши первыми, tg — последним.)
1. Если построить ВСЕ ТРИ треугольника, образованные высотой пирамиды, апофемой и её проекцией на основание, то это будут прямоугольные треугольники с равными острыми углами, поскольку грани равнонаклонены к основанию. Поэтому равны все апофемы, и - главное - равны их проекции на основание.
То есть проекция вершины пирамиды - это точка, равноудаленная от сторон основания, то есть центр вписанной в основание окружности.
2. В плоскости этого треугольника (можно взять любой из трех, они одинаковые) лежит и отрезок от точки на высоте до стороны основания, заданный в условии, - этот отрезок соединяет эту точку с вершиной апофемы, и образуется равнобедренный треугольник, внешний угол при вершине у которого равен π/2 - β (я считаю, что угол β - это угол между этим отрезком и плоскостью основания, в условии тут неточность - если задан угол с боковой гранью, то β' <=> π/4 - β/2 ). Поэтому острые углы этого равнобедренного треугольника равны π/4 - β/2, причем один из них - это угол между апофемой и высотой пирамиды.
Поэтому радиус вписанной в основание окружности равен
r = h*tg(π/4 - β/2);
3. С другой стороны, катеты прямоугольного треугольника в основании равны
Чертежи к задаче - во вложении.
По условию задачи в силу подобия треугольников АВС и ВМН необходимо рассмотреть 2 случая.
1-й случай.
Из подобия треугольников следует равенство ∠АВС=∠MBH (по условию) и ∠АСВ=∠ВMН.
Тогда отношение сходственных сторон:
По теореме косинусов в ∆АВС АС²=АВ²+ВС²-2·АВ·ВС·cos B=18²+16²-2·18·16·4/9=18²+16²-16²=18² => AC=18
В прямоугольном ∆АНВ ВН=АВcosB= 18·4/9=8
Тогда получим
2-й случай.
Из подобия треугольников следует равенство ∠АВС=∠MBH (по условию) и ∠АСВ=∠MНB.
Тогда MH||AC и отношение сходственных сторон:
ответ: 8 или 9.
1. Если построить ВСЕ ТРИ треугольника, образованные высотой пирамиды, апофемой и её проекцией на основание, то это будут прямоугольные треугольники с равными острыми углами, поскольку грани равнонаклонены к основанию. Поэтому равны все апофемы, и - главное - равны их проекции на основание.
То есть проекция вершины пирамиды - это точка, равноудаленная от сторон основания, то есть центр вписанной в основание окружности.
2. В плоскости этого треугольника (можно взять любой из трех, они одинаковые) лежит и отрезок от точки на высоте до стороны основания, заданный в условии, - этот отрезок соединяет эту точку с вершиной апофемы, и образуется равнобедренный треугольник, внешний угол при вершине у которого равен π/2 - β (я считаю, что угол β - это угол между этим отрезком и плоскостью основания, в условии тут неточность - если задан угол с боковой гранью, то β' <=> π/4 - β/2 ). Поэтому острые углы этого равнобедренного треугольника равны π/4 - β/2, причем один из них - это угол между апофемой и высотой пирамиды.
Поэтому радиус вписанной в основание окружности равен
r = h*tg(π/4 - β/2);
3. С другой стороны, катеты прямоугольного треугольника в основании равны
a = r*(1 + tg(α/2)); b = r*(1 + ctg(α/2));
откуда площадь основания
S = r^2*(1 + tg(α/2))*(1 + ctg(α/2))/2 = r^2*(1 + 1/sin(α)) = h^2*(1 + 1/sin(α))*(tg(π/4 - β/2))^2 = h^2*(1 + 1/sin(α))*(1 - sin(β))/(1 + sin(β));
Объем пирамиды равен
V = S*h/3 = (h^3/3)*(1 + 1/sin(α))*(1 - sin(β))/(1 + sin(β));