1)Это тупой угол, тангенс которого равен -3. 2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой: d = корень из ( (x2-x1)^2 + (y2-y1)^2 ), где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате. Отсюда: KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2). KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2). ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2).
косинус L = косинус 90 градусов = 0. косинус М = ML/KM = 4/5 = 0,8. косинус K = KL/KM = 3/5 = 0,6.
H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно. Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH: Для треугольника KLH: LH^2 = KL^2 - KH^2 Для треугольника MLH: LH^2 = ML^2 - MH^2 Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем: КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух. Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно: LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L МН = (16/5) * корень из 2. Находим косинусы углов образованых высотой из треугольников KLH и MLH: косинус HLM = LH/LM = 3/5 = 0,6. косинус HLK = LH/KL = 4/5 = 0,8. вопрос 1) вектора ОА(-1;3)...|OA|=V10 ОХ(1;0)...|OX|=1
cos a=-1/V10 cos a=-0,31622 a=108 гр 26 мин
2)
По теореме синусов: АС/sinB = BC/sinA A = 180 - 30 - 105 = 45 град, sinA = (кор2)/2, sinB = sin30 = 1/2 Получим: АС/(1/2) = (3кор2)/((кор2)/2), 2*АС = 6, АС = 3 Теперь найдем АВ: АВ/sin105 = AC/sin30 = 3/(1/2) = 6 То есть АВ = 6*sin105 = 6*sin75 = 6*sin(45+30) = 6*(sin45*cos30 + sin30*cos45)= =6*( (кор6)/4 + (кор2)/4) = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно) ответ: угол А = 45 гр. АС = 3, АВ = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно)
3)
если есть длины всех сторон, то находим синус нужного угла, свойства корень (sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус угла M
1 Укажите номера верных утверждений.3) Касательная к окружности-это прямая имеющая только одну общую точку с окружностью. 2 Укажите номера верных утверждений. 2) Если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники подобны. 3) Площадь прямоугольного треугольника равна половине произведения его катетов. 3 Укажите номера верных утверждений. 1) Вертикальные углы равны. 4 Укажите номера верных утверждений. 1) Сумма углов треугольника равна 180 градусов. 2) Площадь круга радиуса R равна лR^2. 3) Средняя линия треугольника равна половине одной из его сторон. 5 Укажите номера верных утверждений. 1) Диагонали ромба делят его углы пополам. 2) Площадь трапеции равна произведению суммы ее оснований на высоту. 3) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой:
d = корень из ( (x2-x1)^2 + (y2-y1)^2 ),
где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате.
Отсюда:
KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2).
KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2).
ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2).
косинус L = косинус 90 градусов = 0.
косинус М = ML/KM = 4/5 = 0,8.
косинус K = KL/KM = 3/5 = 0,6.
H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно.
Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH:
Для треугольника KLH: LH^2 = KL^2 - KH^2
Для треугольника MLH: LH^2 = ML^2 - MH^2
Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем:
КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух.
Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно:
LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L
МН = (16/5) * корень из 2.
Находим косинусы углов образованых высотой из треугольников KLH и MLH:
косинус HLM = LH/LM = 3/5 = 0,6.
косинус HLK = LH/KL = 4/5 = 0,8. вопрос 1) вектора
ОА(-1;3)...|OA|=V10
ОХ(1;0)...|OX|=1
cos a=-1/V10
cos a=-0,31622
a=108 гр 26 мин
2)
По теореме синусов: АС/sinB = BC/sinA A = 180 - 30 - 105 = 45 град, sinA = (кор2)/2, sinB = sin30 = 1/2 Получим: АС/(1/2) = (3кор2)/((кор2)/2), 2*АС = 6, АС = 3 Теперь найдем АВ: АВ/sin105 = AC/sin30 = 3/(1/2) = 6 То есть АВ = 6*sin105 = 6*sin75 = 6*sin(45+30) = 6*(sin45*cos30 + sin30*cos45)= =6*( (кор6)/4 + (кор2)/4) = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно) ответ: угол А = 45 гр. АС = 3, АВ = (3кор2)*(кор3 + 1)/2 = 5,8 (примерно)
3)
если есть длины всех сторон, то находим синус нужного угла,
свойства корень
(sin^2x+cos^2x)=1
и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус угла M
2
Укажите номера верных утверждений.
2) Если три угла одного треугольника соответственно равны трем углам другого треугольника, то такие треугольники подобны.
3) Площадь прямоугольного треугольника равна половине произведения его катетов.
3
Укажите номера верных утверждений.
1) Вертикальные углы равны.
4
Укажите номера верных утверждений.
1) Сумма углов треугольника равна 180 градусов.
2) Площадь круга радиуса R равна лR^2.
3) Средняя линия треугольника равна половине одной из его сторон.
5
Укажите номера верных утверждений.
1) Диагонали ромба делят его углы пополам.
2) Площадь трапеции равна произведению суммы ее оснований на высоту.
3) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.