1. Т к стороны треугольника пропорциональны числам 5,6,8, то длины сторон треугольника, подобного данному 5k, 6k, 8k. Разность между наибольшей и наименьшей его сторонами равна 8k - 5k =15; k = 5. Длины сторон треугольника, подобного данному 25, 30, 40. 2. Т к углы треугольника пропорциональны числам 6,3,1, то эти углы равны 6* 180/10=108°, 3* 180/10=54°, 1* 180/10=18°. Биссектриса делит наибольший угол на равные части по 54°. Тогда треугольник, который биссектриса,проведенная из вершины наибольшего угла,отсекает от данного треугольника треугольник,подобен данному по двум углам: угол 18° общий и в каждом треугольнике есть угол 54°.
1. а Если прямые а и b пересекаются или параллельны, то через них можно провести единственную плоскость (следствия из аксиом); б) Если прямые а и b совпадают, то через них можно провести несколько плоскостей. 2. Прямая НО пересекается с прямыми AD и AK, значит она лежит в плоскости DAK, которая пересекает плоскость DBC по прямой DK, прямая НО пересекает прямую DK , а следовательно и плоскость DBC, в точке Р. 3. Плоскости ADK и ОСК пересекаются по прямой АК; Плоскости BDK и АС К. пересекаются по прямой ОК.
Длины сторон треугольника, подобного данному 25, 30, 40.
2. Т к углы треугольника пропорциональны числам 6,3,1, то эти углы равны 6* 180/10=108°, 3* 180/10=54°, 1* 180/10=18°. Биссектриса делит наибольший угол на равные части по 54°. Тогда треугольник, который биссектриса,проведенная из вершины наибольшего угла,отсекает от данного треугольника треугольник,подобен данному по двум углам: угол 18° общий и в каждом треугольнике есть угол 54°.
б) Если прямые а и b совпадают, то через них можно провести несколько плоскостей.
2. Прямая НО пересекается с прямыми AD и AK, значит она лежит в плоскости DAK, которая пересекает плоскость DBC по прямой DK, прямая НО пересекает прямую DK , а следовательно и плоскость DBC, в точке Р.
3. Плоскости ADK и ОСК пересекаются по прямой АК;
Плоскости BDK и АС К. пересекаются по прямой ОК.