Основание равнобедренного тр-ка АС = а = 18см, тогда половина основания 9см. Боковая сторона АВ = ВС = b = 15см. Найдём высоту h, опущенную на основание, по теореме Пифагора:. h² = 15² - 9² = 225 - 81 = 144 h = 12(см)
Найдём площадь тр-ка S и полупериметр р S = 0,5a·h = 0,5·18·12 = 108(см²) р = (18 + 2·15):2 = 48:2 = 24(см)
Пусть ABC - прямоугольный треугольник. AB u BC - катеты, AC - гипотенуза. Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30° Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2 BD - высота, опущенная на гипотенузу.
Дано: АВС - равнобедренный тр-к, АС = 18см, АВ = ВС = 15см
Найти: R и r
Основание равнобедренного тр-ка АС = а = 18см, тогда половина основания 9см. Боковая сторона АВ = ВС = b = 15см. Найдём высоту h, опущенную на основание, по теореме Пифагора:.
h² = 15² - 9² = 225 - 81 = 144
h = 12(см)
Найдём площадь тр-ка S и полупериметр р
S = 0,5a·h = 0,5·18·12 = 108(см²)
р = (18 + 2·15):2 = 48:2 = 24(см)
Радиус описанной окружности
R = а·b·b/(4S) = 18·15·15/(4·108) = 4050:432 = 9,375(см)
Радиус писанной окружности
r = S/p = 108/24 = 4,5(см)
ответ: R = 9,375 см, r = 4,5см
Угол ACB = 60°, тогда угол CAB = 180 - 90 - 60 = 30°
Катет BC противолежит углу 30° ⇒ такой катет равен половине гипотенузы. BC = AC/2
BD - высота, опущенная на гипотенузу.
В прямоугольном треугольнике BCD:
СВD= 180 - 90 - 60 = 30°
BC - гипотенуза, СD u BD - катеты, причем СD противолежит углу 30° ⇒ CD = BC/2
По теореме Пифагора
BD² + CD² = BC²
4² + (BC/2)² = BC²
16 + BC²/4 = BC²
16 = 4BC²/4 - BC²/4
3BC²/4 = 16
3BC² = 64
BC² = 64/3
В прямоугольном треугольнике ABD:
AB - гипотенуза, AD u BD - катеты, причем BD противолежит углу 30° ⇒ AB = 2BD = 8
По теореме Пифагора
AB² + BC² = AC²
(2BD)² + 64/3 = AC²
(2 * 4)² + 64/3 = AC²
AC² = 64 + 64/3
AC² = 192/3 + 64/3
AC² = 256/3
AC=√(256/3)
AC = 16/√3
AC = 16√3 / 3 (cм)