У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
DM=3см, <BDC=25гр
Объяснение:
Странная задача, считать ничего и не надо.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.