Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
Шаги построения:
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
Но тогда по теореме касательной и секущей имеем:
AB^2 = AC * AD