Дано точки А (7; 3; -1) i B (х; 5; z). Відомо, що середина С відрізка АВ належить осі ординат. 1) Знайдіть координати точки С. 2) Знайдіть значення х i z. Полное решение
Площадь основания равна сумме площадей треугольников АВД и ВСД. Площадь АВД равна S=½*АВ*ВД=½*3*4=6. Значит площадь основания равна 12. Найдем площади боковых поверхностей. По условию задачи <АВ1В=45°, т.е. тр-к АВ1В - прямоугольный равнобедренный, В1В=АВ=3. Высота параллелепипеда равна 3. АД найдем по теореме Пифагора. АД=√AB^2+BD^2=√9+16=√25=5 Площадь боковой поверхности АА1Д1Д равна 5*3=15, площадь АА1В1В равна 3*3=9 Площадь полной поверхности параллелепипеда равна сумме площадей оснований и боковых поверхностей: 2(9+15+12)=2*36=72
Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
Найдем площади боковых поверхностей.
По условию задачи <АВ1В=45°, т.е. тр-к АВ1В - прямоугольный равнобедренный, В1В=АВ=3. Высота параллелепипеда равна 3. АД найдем по теореме Пифагора. АД=√AB^2+BD^2=√9+16=√25=5
Площадь боковой поверхности АА1Д1Д равна 5*3=15, площадь АА1В1В равна 3*3=9
Площадь полной поверхности параллелепипеда равна сумме площадей оснований и боковых поверхностей: 2(9+15+12)=2*36=72
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4