Дано відрізок АВ і точку О, яка йому не належить. Побудуйте відрізок А1В1, який є образом відрізка АВ при повороті: a) на кут 50° навколо точки О за годинниковою стрілкою; б) на кут 130° навколо точки О проти годинникової стрілки.
X (м) ширина первоначального прямоугольника х+2 (м) длина первоначального прямоугольника х(х+2) ( м²) первоначальная площадь прямоугольниках+3 (м) новая ширинах+2+8=х+10 (м) новая длина(х+3)(х+10) (м²) площадь нового прямоугольникаСоставим уравнение по условию задачи3х(х+2)=(х+3)(х+10)3х²+6х=х²+3х+10х+303х²-х²+6х-13х-30=02х²-7х-30=0D=49+240=289x₁=(7+17)/4=6x₂=(7-17)/4=-2,5 не подходит по условию задачиширина прямоугольника 6 м, а длина 6+2=8 мответ: 6 м; 8 м Можно еще решить через два неизвестных с системы уравнений.
Равнобедренную трапецию можно представить как три отдельные фигуры: два прямоугольных треугольника, равных между собой, и прямоугольник.
Из условия задачи мы знаем гипотенузу прямоугольного треугольника - это 5. Мы можем найти один из его катетов - это будет половина разности двух оснований трапеции: (8 - 2)/2 = 3. Соответственно, второй катет будет высотой трапеции, и мы находим его по теореме Пифагора: 5^2 = 3^2 + x^2. х = sqrt(25-9) = 4 (треугольник с таким соотношением сторон называется египетским). Соответственно, квадрат высоты трапеции будет 4^2 = 16.
Диагональ равнобедренной трапеции можно найти по формуле: квадратный корень из суммы квадрата боковой стороны и произведения обоих оснований. d = sqrt (c^2 + ab) = sqrt(5^2 + 2*8) = sqrt(25+16) = sqrt(41). Для решения задачи не нужно находить саму диагональ, достаточно ее квадрата: sqrt(41)^2 = 41.
Квадрат высоты = 16, квадрат диагонали = 41.
Объяснение:
Равнобедренную трапецию можно представить как три отдельные фигуры: два прямоугольных треугольника, равных между собой, и прямоугольник.
Из условия задачи мы знаем гипотенузу прямоугольного треугольника - это 5. Мы можем найти один из его катетов - это будет половина разности двух оснований трапеции: (8 - 2)/2 = 3. Соответственно, второй катет будет высотой трапеции, и мы находим его по теореме Пифагора: 5^2 = 3^2 + x^2. х = sqrt(25-9) = 4 (треугольник с таким соотношением сторон называется египетским). Соответственно, квадрат высоты трапеции будет 4^2 = 16.
Диагональ равнобедренной трапеции можно найти по формуле: квадратный корень из суммы квадрата боковой стороны и произведения обоих оснований. d = sqrt (c^2 + ab) = sqrt(5^2 + 2*8) = sqrt(25+16) = sqrt(41). Для решения задачи не нужно находить саму диагональ, достаточно ее квадрата: sqrt(41)^2 = 41.