Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
В ромбе АВСD угол А=30°, следовательно <В =150° (сумма углов ромба, прилежащих к одной стороне, равна 180°). Это тупой угол и высота из вершины угла А, проведенная к прямой CD, опустится на продолжение стороны CD, в точку Н. В треугольнике AHD угол ADH =30°, как смежный с углом D ромба. Следовательно, катет АН равен половине гипотенузы AD (лежит против угла 30°). АН=12/2 =6. В прямоугольном треугольнике МАН (отрезок МА перпендикулярен плоскости АВСD, значит <MAH=90°) гипотенуза МН по Пифагору равна √(6²+6²)= 6√2. Эта гипотенуза и есть искомое расстояние, так как МН перпендикулярна CD по теореме о трех перпендикулярах.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42
В ромбе АВСD угол А=30°, следовательно <В =150° (сумма углов ромба, прилежащих к одной стороне, равна 180°). Это тупой угол и высота из вершины угла А, проведенная к прямой CD, опустится на продолжение стороны CD, в точку Н. В треугольнике AHD угол ADH =30°, как смежный с углом D ромба. Следовательно, катет АН равен половине гипотенузы AD (лежит против угла 30°). АН=12/2 =6. В прямоугольном треугольнике МАН (отрезок МА перпендикулярен плоскости АВСD, значит <MAH=90°) гипотенуза МН по Пифагору равна √(6²+6²)= 6√2. Эта гипотенуза и есть искомое расстояние, так как МН перпендикулярна CD по теореме о трех перпендикулярах.
ответ: 6√2 ед.