В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
are0t
are0t
29.04.2023 09:33 •  Геометрия

Даны два прямоугольных треугольника abc и abd доказать abc=adc​

Показать ответ
Ответ:
lenaa666
lenaa666
21.08.2021 08:09

Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:

а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.

б) уравнение медианы BM.  

Находим координаты точки М как середины стороны АС.

М(((-2+1)/2; (1+3)/2) = (-0,5; 2).

Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).

Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.

Оно же в общем виде 7у – 2х – 15 = 0.

И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).

в) cos угла BCA.  

Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.

Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.

cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.

г) уравнение высоты CD.

Находим уравнение стороны АВ.

Вектор AB = ((3-(-2)); (3-1)) = (5; 2).

Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).

Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.

0 = (-5/2)*1 + b. Отсюда b = 5/2.  

Уравнение CD: y = (-5/2)x + (5/2).

д) длина высоты СD.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d = (A·Mx + B·My + C)/√A2 + B2

Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:  

2х – 5у + 9 = 0.

d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =

= 11/√29 = 11√29/29 ≈ 2.0426487.

е) площадь треугольника АВС по векторам.

Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:

S= ± (1 /2) *(x1−x3       y1−y3 )

                       (x2−x3      y2−y3 )  

       

 x1−x3       y1−y3  

        x2−x3      y2−y3    

A(−2,1), B(3,3), С(1,0).

S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.  

0,0(0 оценок)
Ответ:
Мирослава1509061
Мирослава1509061
21.01.2021 18:36

Жирным шрифтом обозначены вектора, скалярные величины обозначены обычными шрифтом.

Пусть есть три некомпланарных вектора a b c, являющиеся "боковыми" ребрами тетраэдра из условия задачи (в том смысле, что все три имеют общее начало в вершине).

Попарные векторные произведения этих векторов дают векторы, перпендикулярные граням. Поскольку все грани равны, то эти векторные произведения имеют одинаковую абсолютную величину - удвоенную площадь грани. Приняв эту удвоенную площадь грани за единицу измерения площади (это никак не ограничивает общность), можно считать нормальные вектора cxb = n₁; bxa = n₂; axc = n₃; единичными векторами.

Я выбрал порядок в произведениях векторов так, чтобы они "торчали" наружу пирамиды. Уже сейчас стоит обратить внимание, что в этом случае двугранные углы при ребрах составляют 180° в сумме с углами между так выбранными нормалями. Поэтому косинусы углов будут равны по величине, но противоположного знака.

Осталась еще четвертая грань. её ребрам соответствуют вектора a₁ = b - c; b₁ = c - a ; c₁ = a - b; причем длины векторов a₁ = a; b₁ = b; c₁ = c; так как четвертая грань равна трем "боковым". Если теперь построить нормальный вектор аналогично трем предыдущим (то есть так, чтобы он смотрел наружу тетраэдра), то

n₄ = - (с - a)x(b - c) = - bxa - cxb - axc = -(n₁ + n₂ + n₃);

или n₁ + n₂ + n₃ + n₄ = 0; (что само по себе - абсолютно замечательный результат).

пусть Σ = n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄; сумма всех скалярных произведений между нормалями. Для того, чтобы доказать утверждение в задаче, нужно показать, что Σ = - 2; (каждое из произведений равно "минус косинус" угла при ребре между парами граней, заданных нормалями; я напомню, что все нормальные вектора - единичные, то есть равны 1 по модулю)

Я слегка переписываю это выражение Σ  = n₁n₂ + n₁n₃ + n₂n₃ + (n₁ + n₂ + n₃)n₄ = n₁n₂ + n₁n₃ + n₂n₃ - n₄n₄ = n₁n₂ + n₁n₃ + n₂n₃ - 1;

Однако все грани тетраэдра равноценны, и аналогично можно записать

Σ  = n₂n₃ + n₂n₄ + n₃n₄ - 1;

Σ  = n₃n₄ + n₃n₁ + n₄n₁ - 1;

Σ  = n₁n₂ + n₁n₄ + n₂n₄ - 1;

Если сложить все четыре равенства, то получится

4Σ  = 2(n₁n₂ + n₁n₃ + n₁n₄ + n₂n₃ + n₂n₄ + n₃n₄) - 4;

4Σ = 2Σ - 4; Σ = -2 чтд. :)

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота