Даны две концентрические окружности. радиус большей окружности равен 12. определите радиус меньшей окружности, если коэффициент гомотетии при переходе окружности с меньшим радиусом в окружность с большим радиусом равен
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))
ответ:1. Площадь полной поверхности прямого параллелепипеда
Sп = Sб+2Sо
Sо — площадь основания. Основание прямого параллелепипеда - одинаковые параллелограммы, лежащие в параллельных плоскостях.
Sб - площадь боковой поверхности.
2. Sо = S параллелограмма= Площадь параллелограмма равна произведению сторон на синус угла между ними= 6 * 8 * sin60°= 48*√3/2 кв. м.
3.
Площадь боковой поверхности прямого параллелепипеда
Sб = Ро*h, где
Ро — периметр основания = 2 * (6+8) = 28м.
h — высота = боковому ребру= 5м.
Sб = 28 * 5= 140 кв. м.
4. Поэтому полная поверхность параллелепипеда равна:
Sп= 140 + 2 * (48 * √3/2) = 140 + 48 * √3
~ 140+ 41,568 ~ 181,568 кв. м.
Объяснение: