Даны две пересекающиеся плоскости, в одной из них взята точка, удалённая от второй плоскости на 5 см и от линии пересечения плоскостей на 10 см. Найдите угол между плоскостями.
Сумма углов тр-ка равна 180гр. Значит угол BDA = 180-47-74=59
угол CDB=180-106-58=16. Значит весь угол CDA=59+16=75
Сравниваем суммы противоположных углов четырехугольника (74+106=75+105) они равны и равны 180, значит вокруг этого четырехугольника можно описать окружность.
Для окружности верна теорема: Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
В нашем случае дуга BC = 2*уголCDB = 32, а дуга AD = 2*угол ABD = 94.
Значит угол между диагоналями BOC=1/2*(BC+AD)=1/2*(32+94)=63.
Если мы представим себя в роли наблюдателя, стоящего в начале координат и обращенного в сторону положительной полуоси х, то в случае а) ось у будет идти справа налево, а в случае б) — слева направо; В первом случае координатную систему называют правой, во втором левой.
Координаты точки C в новой и старой системе координат связаны соотношениями с учётом того, что они имеют разную ориентацию – старая система правая, а новая - левая:
{x'=(x-a)* cosφ + (y-b)*sinφ
{y'=(y-a)*sinφ - (y-b)*cosφ.
Для заданных условий: a = -3, b = -2, cosφ=-4/5, sinφ=√(1-(-4/5)^2 )=3/5.
Проверим координаты точки С(8; 4) в новой (левой) системе.
63гр
Объяснение:
Сумма углов тр-ка равна 180гр. Значит угол BDA = 180-47-74=59
угол CDB=180-106-58=16. Значит весь угол CDA=59+16=75
Сравниваем суммы противоположных углов четырехугольника (74+106=75+105) они равны и равны 180, значит вокруг этого четырехугольника можно описать окружность.
Для окружности верна теорема: Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
В нашем случае дуга BC = 2*уголCDB = 32, а дуга AD = 2*угол ABD = 94.
Значит угол между диагоналями BOC=1/2*(BC+AD)=1/2*(32+94)=63.
Если мы представим себя в роли наблюдателя, стоящего в начале координат и обращенного в сторону положительной полуоси х, то в случае а) ось у будет идти справа налево, а в случае б) — слева направо; В первом случае координатную систему называют правой, во втором левой.
Координаты точки C в новой и старой системе координат связаны соотношениями с учётом того, что они имеют разную ориентацию – старая система правая, а новая - левая:
{x'=(x-a)* cosφ + (y-b)*sinφ
{y'=(y-a)*sinφ - (y-b)*cosφ.
Для заданных условий: a = -3, b = -2, cosφ=-4/5, sinφ=√(1-(-4/5)^2 )=3/5.
Проверим координаты точки С(8; 4) в новой (левой) системе.
x’ = (8-(-3))*(-4/5) + (4-(-2)*(3/5) = (-44/5) + (18/5) = -26/5 = -5,2.
y’ = (8-(-3))*(3/5) - (4-(-2)*(-4/5) = (33/5) - (-24/5) = 57/5 = 11,4.
На прилагаемом графике видно, что расчёт верен.