Даны точки А (-1;2),В(3;0),С(-1;-2) постройте на четырех различных чертежах: а) треугольник а1в1с1 симметричный треугольнику авс относительно точки D(1;-1) б) треугольник А2В2С2, симметричный треугольнику авс относительно биссектрисы первого и третьего координатных углов
в) треугольник А3В3С3, который получается при параллельном переносе треугольник АВС на вектор -1/2ВС
г) треугольник А4В4С4, который получается при повороте треугольника АВС на 90 градусов по часовой стрелке вокруг основания высоты ВH
Укажите координаты полученных точек
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
полное условие - прикрепленное вложение.
Задание 1.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
110°+70°=180° ⇒ 180°=180° ⇒ a || b
Задание 2.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
125°+65°=180° ⇒ 190°=180° ⇒ a и b не параллельны
Задание 3.
На картинке отмечены накрест лежащие углы при прямых a и b и секущей с, они должны быть равны.
40°=40° ⇒ a || b
Задание 4.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
180°-a+a=180° ⇒ 180°=180° ⇒ a || b