Даны точки А(25;-9;13) и В(8;14;2). Найдите расстояние от точки А до плоскости OXY.
2. Найдите скалярное произведение векторов {-4;7;1} и {5;5;1}.
3. Даны точки А(-5;2;0), В(-4;3;0), С(-5;2;-2).Найдите длину средней линии треугольника АВС, соединяющей его меньший катет и гтпотенузу.
4. Определите вид четырехугольника АВСD, если А(6;7;8), В(8;2;6),С(4;3;2),D(2;8;4).
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ
Объяснение:
Обозначим неизвестные отрезки за x
1) неизвестный отрезок является гипотенузой прямоугольного треугольника:
2) неизвестный отрезок является высотой, проведённой к основанию, в равнобедренном треугольнике. Как известно, высота, проведённая к основанию, в равнобедренном треугольнике является также медианой и биссектрисой. Следовательно неизвестный отрезок делит основание пополам и является катетом в прямоугольном треугольнике с гипотенузой равной 5 и катетом равным :
3) Здесь имеется три неизвестных отрезка, два из которых равны.
Начнём с высоты, опять же она проведена к основанию в равнобедренном треугольнике, а значит является и медианой и биссектрисой. А медиана проведённая к гипотенузе в прямоугольном треугольнике равна половине гипотенузы:
Нам известно, что оставшиеся неизвестные отрезки являются катетами в прямоугольном треугольнике и что они равны. Нам известна гипотенуза этого треугольника: