Уравнение прямой АВ: у=kx+b Чтобы найти коэффициенты k и b подставим координаты точек A и B, получим систему уравнений: х=4 у=3 3=4k+b (*) x=-2 y=0 0=-2k+b (**) Вычитаем из уравнения (*) уравнение (**): 3=6k ⇒ k= 1/2 Прямая, перпендикулярная прямой АВ имеет угловой коэффициент k=-2 Так как произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1) у=-2х+b - уравнение прямой, перпендикулярной АВ Чтобы найти b подставим координаты точки С х=2 у=-3 -3=-2·2+b ⇒ b=-3+4=1 ответ. у=-2х+1
1. На данной прямой а отметим произвольную точку А.
2. Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
3. Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
4. Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а. (см. рис. 1)
5. Проведем окружность с центром в точке А с радиусом, равным данному отрезку k. Точки пересечения этой окружности с прямой b обозначим M и N. (см. рис. 2)
Точки М и N - точки, удаленные от точки пересечения прямых на расстояние, равное длине данного отрезка.
Все построение надо выполнять, конечно, на одном чертеже. Для наглядности построение последнего пункта выполнено отдельно.
Чтобы найти коэффициенты k и b подставим координаты точек A и B, получим систему уравнений:
х=4 у=3
3=4k+b (*)
x=-2 y=0
0=-2k+b (**)
Вычитаем из уравнения (*) уравнение (**):
3=6k ⇒ k= 1/2
Прямая, перпендикулярная прямой АВ имеет угловой коэффициент k=-2
Так как произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)
у=-2х+b - уравнение прямой, перпендикулярной АВ
Чтобы найти b подставим координаты точки С
х=2 у=-3
-3=-2·2+b ⇒ b=-3+4=1
ответ. у=-2х+1
1. На данной прямой а отметим произвольную точку А.
2. Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
3. Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
4. Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а. (см. рис. 1)
5. Проведем окружность с центром в точке А с радиусом, равным данному отрезку k. Точки пересечения этой окружности с прямой b обозначим M и N. (см. рис. 2)
Точки М и N - точки, удаленные от точки пересечения прямых на расстояние, равное длине данного отрезка.
Все построение надо выполнять, конечно, на одном чертеже. Для наглядности построение последнего пункта выполнено отдельно.