Построить изображение параллелограмма ABCD, в которое отображается параллелограмм при повороте на 120(градусов) вокруг точки О по часовой стрелке, где точка О лежит вне параллелограмма.
Сделаем рисунок. Сумма противоположных углов вписанного четырехугольника равна 180° Т.к. угол КLМ =120°, угол МNК=60° LN - биссектриса. Углы МLN=КLN=60° В окружности равные вписанные углы опираются на равные дуги и на равные хорды. Хорды МN=КN. Треугольник КNМ - равнобедренный с равными углами при стороне КМ. Из суммы углов треугольника углы при КМ равны по 60°⇒ треугольник КМN - равносторонний. По т.косинусов найдем сторону КМ из треугольника КLМ. КМ²=4²+6²-2*4*6*cos (120°) KM²=76 Из треугольника МLN по т.косинусов выразим сторону MN МN²=LМ²+LN²-2*6*LN*cos(60°) 76=36+LN²-6*LN LN²-6*LN-40=0 Решив квадратное уравнение (вычисления сделаете сами), LN=10 Второй корень отрицательный и не подходит.
1. Линия пересечения плоскости сечения и грани АА1В1В - прямая ВА1. Точки А1 и F1 принадлежат и плоскости сечения и грани FF1A1A, значит прямая А1F1 - линия пересечения плоскости сечения и грани FF1A1A. Линия пересечения плоскости сечения и плоскости основания ABCDEF пройдет по прямой ВЕ, так как две параллельные плоскости (оснований призмы) пересекаются третьей плоскостью (сечения) по параллельным прямым, а в правильной шестиугольной призме стороны АF и А1F1 параллельны диагонали ВЕ основания. Линия пересечения плоскости сечения и грани EE1F1F - это прямая EF1. Итак, получено искомое сечение ВА1F1Е. 2. В правильном шестиугольнике внутренние углы равны 120°. Тогда <ABO=60°, а <BAO=30°. Против угла 30° лежит катет ВО, равный половине гипотенузы АВ. То есть ВО=1. тогда АО=√3. В прямоугольном треугольнике АОА1 катет АА1=2, катет АО=√3. По Пифагору гипотенуза ОА1=√(4+3)=√7. Заметим, что искомое расстояние от точки В до прямой А1F1 - это перпендикуляр ВН, опущенный из точки В на прямую A1F1. Значит ВН=ОА1=√7, так как ОА1 тоже перпендикуляр к А1F1( угол ОАF=<BAF-<BAO или <OAF=120°-30°=90°, то есть ОА перпендикуляр к AF, и А1А - перпендикуляр к АF, а АF параллельна А1F1 и по теореме о трех перпендикулярах ОА1 - перпендикуляр к A1F1). Итак, ВН=√7. ответ: расстояние от точки В до прямой А1F1 равно √7.
Т.к. угол КLМ =120°, угол МNК=60°
LN - биссектриса.
Углы МLN=КLN=60°
В окружности равные вписанные углы опираются на равные дуги и на равные хорды.
Хорды МN=КN.
Треугольник КNМ - равнобедренный с равными углами при стороне КМ.
Из суммы углов треугольника углы при КМ равны по 60°⇒
треугольник КМN - равносторонний.
По т.косинусов найдем сторону КМ из треугольника КLМ.
КМ²=4²+6²-2*4*6*cos (120°)
KM²=76
Из треугольника МLN по т.косинусов выразим сторону MN
МN²=LМ²+LN²-2*6*LN*cos(60°)
76=36+LN²-6*LN
LN²-6*LN-40=0
Решив квадратное уравнение (вычисления сделаете сами),
LN=10
Второй корень отрицательный и не подходит.
шестиугольной призме стороны АF и А1F1 параллельны диагонали ВЕ основания. Линия пересечения плоскости сечения и грани EE1F1F - это прямая EF1.
Итак, получено искомое сечение ВА1F1Е.
2. В правильном шестиугольнике внутренние углы равны 120°. Тогда
<ABO=60°, а <BAO=30°. Против угла 30° лежит катет ВО, равный половине гипотенузы АВ. То есть ВО=1. тогда АО=√3.
В прямоугольном треугольнике АОА1 катет АА1=2, катет АО=√3. По Пифагору гипотенуза ОА1=√(4+3)=√7.
Заметим, что искомое расстояние от точки В до прямой А1F1 - это
перпендикуляр ВН, опущенный из точки В на прямую A1F1. Значит ВН=ОА1=√7, так как ОА1 тоже перпендикуляр к А1F1( угол ОАF=<BAF-<BAO или <OAF=120°-30°=90°, то есть ОА перпендикуляр к AF, и А1А - перпендикуляр к АF, а АF параллельна А1F1 и по теореме о трех перпендикулярах ОА1 - перпендикуляр к A1F1). Итак, ВН=√7.
ответ: расстояние от точки В до прямой А1F1 равно √7.