Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Из условия известно, что периметр равнобедренного треугольника равен 48 см. Так же известно, что его боковая сторона в 1.5 раза больше основания. Для того, чтобы вычислить стороны треугольника составим и решим уравнение.
Давай обозначим с переменной x см длину основания, а с 1.5x см длину боковой стороны.
Для нахождения периметра равнобедренного треугольника:
P = 2a + b;
2 * 1.5x + x = 48;
3x + x = 48;
4x = 48;
x = 48 : 4;
x = 12 см длина основания, тогда 1,5 * 12 = 18 см основание треугольника.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Відповідь:
Из условия известно, что периметр равнобедренного треугольника равен 48 см. Так же известно, что его боковая сторона в 1.5 раза больше основания. Для того, чтобы вычислить стороны треугольника составим и решим уравнение.
Давай обозначим с переменной x см длину основания, а с 1.5x см длину боковой стороны.
Для нахождения периметра равнобедренного треугольника:
P = 2a + b;
2 * 1.5x + x = 48;
3x + x = 48;
4x = 48;
x = 48 : 4;
x = 12 см длина основания, тогда 1,5 * 12 = 18 см основание треугольника.
Вот :3
Пояснення: