Для туристической поездки надо запостить бензина сколько 20 литровых канистр можно заполнить бензином и с баком если бак имеет форму прямоугольного параллелепипеда с размерами длина 8 дм ширина 6 дм высота 4 дм
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
R=4см
Sосн=16π см²
Sбок.=16π√2см²
Sпол.=16π+16π√2 см²
Объяснение:
∆SBA- равнобедренный <SBA=<SAB=45°
∆SOA- прямоугольный, равнобедренный.
<SOA=<ASO=45°.
SO=OA=R=4 см
Sосн=πR²=π*4²=16π см² площадь основания конуса.
∆SOA- прямоугольный.
SA- гипотенуза
SO и ОА - катеты.
По теореме Пифагора найдем
SA²=SO²+OA²=4²+4²=16+16=32
SA=√32=4√2 см апофема
l=SA=4√2 см
Sбок=πRl, где l- апофема.
Sбок=π*4*4√2=16π√2 см² площадь боковой поверхности конуса.
Sсеч=SO*BA/2=SO*2*OA/2=SO*OA=4*4= =16 см² площадь осевого сечения.
Sпол=Sосн+Sбок=16π+16π√2 см² площадь полной поверхности конуса.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: