Докажите, что треугольник АВС с координатами вершин А(3;6) В(-1;8) С(5;2) равнобедренный. Найдите величину высоты АН. Найдите площадь треугольника АВС.
1. Наклонная равна 16 см, т.е если рассматривать прямоугольный треугольник, что гипотенуза равна 16 см, один из острых углов (нижний угол) равен 30° => нужно найти нижний катет, т.е проекцию. Катет напротив угла в 30° равен половине гипотенузы:
Ah = AM/2 = 16/2 = 8 см - это высота, найдем второй катет: по теореме Пифагора:
Mh= √(16²-8²) = 8√3 - это и есть проекция. (если нужен будет рисунок, напиши в комментарии)
2)
а) угол между AB и CC1 =90°
б) угол между плоскостями ABC и A1DC = 45°
(если нужен рисунок, напиши в комментарии)
3) Мы видим, что нам дана прямоугольная трапеция, с высотой 4 см, большим основанием 12 см и меньшим 5см, нам нужно найти другую боковую сторону (наш OC). Рассмотрим прямоугольный треугольник OCH:
Объяснение:
1. Наклонная равна 16 см, т.е если рассматривать прямоугольный треугольник, что гипотенуза равна 16 см, один из острых углов (нижний угол) равен 30° => нужно найти нижний катет, т.е проекцию. Катет напротив угла в 30° равен половине гипотенузы:
Ah = AM/2 = 16/2 = 8 см - это высота, найдем второй катет: по теореме Пифагора:
Mh= √(16²-8²) = 8√3 - это и есть проекция. (если нужен будет рисунок, напиши в комментарии)
2)
а) угол между AB и CC1 =90°
б) угол между плоскостями ABC и A1DC = 45°
(если нужен рисунок, напиши в комментарии)
3) Мы видим, что нам дана прямоугольная трапеция, с высотой 4 см, большим основанием 12 см и меньшим 5см, нам нужно найти другую боковую сторону (наш OC). Рассмотрим прямоугольный треугольник OCH:
OH = 4; HC= 12-5= 7; нужно найти OC:
по теореме Пифагора:
OC= √(4²+7²) = √65
(если нужен будет рисунок, напиши в комментарии)
Удачи на экзаменах.
р- полупериметр треугольника,
пусть АД=3,6 -проекция катета АС на гипотенузу АВ треугольника АВС,<C=90 гр, ДВ=АВ-АД= 10-3,6=6,4, СД перпендикулярна АВ,
находим катет СД из прямоугольных треугольников СДА иСДВ:
СД²=АС²-АД²=АС²-3,6²=АС²-12,96
СД²=ВС²-ДВ²=ВС²-6,4²=ВС²-40,96
АС²-12,96=ВС²-40,96, ВС²=АС²-12,96+40,96=АС²+28
из данного треугольника АВС находим АВ²=100=АС²+ВС²=АС²+АС²+28
2АС²=100-28=72, АС²=36, АС=6,ВС²=АВ²-АС²=100-36=64, ВС=8
Sтр=(ВС*АС)/2=(8*6)/2=24,р=(АВ+ВС+АС)/2= (10+8+6)/2=12
r= Sтр/р=24/12=2-искомый радиус