Домашнє завдання Урок 5 Ком - У 5. Познач знаком к сердження (три із семи), з якими ти погоджуєшся, і зна вважаєш . 5.1. Визначення висот точок земної поверхні: абсолютну висоту точок земної поверхні в деяких країнах відлічує ють від рівня Балтійського моря; бергштрих вільним кінцем указує напрямок схилу, висоту точок земної поверхні можна визначити лише за ками висот; чим більша відстань між горизонталями, тим крутіший схил; перевищення гори Джомолунгма над рівнем Мертвого моря (— 430 м) становить 9 278 м; усі точки, розташовані на одній горизонталі, мають різну абсолют- ну висоту; гори на фізичній карті позначають відтінкам познач-..
которой является правильный многоугольник, а вершина пирамиды
проецируется в центр этого многоугольника. Высота боковой грани,
проведенная из вершины правильной пирамиды,
называется апофемой, боковые ребра равны, боковые грани равны
(все являются равнобедренными треугольниками)".
Следовательно, углы наклона боковых ребер к основанию равны -
это углы между ребром и высотой основания (правильного треугольника).
Углы углы наклона боковых граней равны - это углы между апофемой
и высотой основания.
Высота правильного треугольника по формуле равна h=(√3/2)*a.
Эта высота является и медианой, значит она делится точкой О
(центром основания) в отношении 2:1, считая от вершины.
ОС=(2/3)*h=(√3/3)*a.
OH=(1/3)*h=(√3/6)*a.
Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS:
tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46.
α=arctg(3,46). α ≈73,9°
Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS:
tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93.
β=arctg(6,93). β ≈81,8°.
1
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.