Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Для упрощения записей примем, что куб АВСDА1В1С1D1 - единичный, то есть его сторона равна 1. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными. Значит MN и A1C - скрещивающиеся прямые. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся. Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол. NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору). NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору). CP=NM=√29/4. CA1=√(2+1)=√3 (диагональ куба). А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4. По теореме косинусов: Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87. ответ: Cosα=9/√87.
Второй вариант решения - координатный метод. Пусть куб единичный, то есть сторона его "а"=1. Начало координат в точке С(0;0;0). Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1). Тогда вектор MN{-1;-1/2;-3/4}, его модуль |MN|=√(1+1/4+9/16)=√29/4. Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3. Cosα=(MN*A1C)/(|MN|*|A1C|) или Cosα=(1+1/2+3/4)/(√87/4)=9/√87. ответ: Cosα=9/√87.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными.
Значит MN и A1C - скрещивающиеся прямые.
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Проведем прямую СР параллельно прямой MN. Угол А1СР - искомый угол.
NA=√(АВ²+ВN²)=√(1+1/4)=√5/2 (по Пифагору).
NM=√(NA²+AM²)=√(5/4+9/16)=√29/4 (по Пифагору).
CP=NM=√29/4.
CA1=√(2+1)=√3 (диагональ куба).
А1Р=√(MA1²+MP²)=√(1/16+1/4)=√5/4.
По теореме косинусов:
Cosα=(CA1²+CP²-A1P²)/(2CA1*CP) или
Cosα=(3+29/16-5/16)/(2√3*√29/4)=(72/16)/(√87\2)=9/√87.
ответ: Cosα=9/√87.
Второй вариант решения - координатный метод.
Пусть куб единичный, то есть сторона его "а"=1.
Начало координат в точке С(0;0;0).
Точка N(0;1/2;0), точка М(1;1;3/4), точка А1(1;1;1).
Тогда вектор MN{-1;-1/2;-3/4}, его модуль
|MN|=√(1+1/4+9/16)=√29/4.
Вектор А1С{-1;-1;-1}, |A1C|=√(1+1+1)=√3.
Cosα=(MN*A1C)/(|MN|*|A1C|) или
Cosα=(1+1/2+3/4)/(√87/4)=9/√87.
ответ: Cosα=9/√87.