Из точки а к плоскости проведены перпендикуляр ао и две равные наклонные ав и ас.известно,что вс=во.найдите углы треугольника вос.решение а /| \ в / | \с оав=асвс=воесли две стороны во и вс равны, значит со=вс=во(только у меня получилось, угол вос=180 град, но по факту 60 град)из этого следует, что всо - треугольник равностороннйи, а значит углы равны 60 град
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .