Г - 9 зачет по теме: «Решение треугольников» Вариант 1.
1. Определить вид треугольника со сторонами 5; 8; 9
2. Найти площадь равнобедренного треугольника, если его боковая сторона равна 4см, а
угол при основании равен 15°
3. В ДАВС сторона АС = 5 см, угол В=30°, угол A =45°. Найдите сторону BC.
4. Решить треугольник, если угол а=20, угол B =60°, угол C = 450
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Проведем из вершин тупых углов высоты к большему основанию. Они отсекли от трапеции два равных прямоугольных треугольника, у которых сторонами являются боковая сторона, высота трапеции и часть большего основания, который легко вычисляется так. (в-а)/2.
Тогда высота трапеции - это прилежащий к углу α катет, который подлежит определению. Из прямоугольного треугольника найдем высоту. Она равна ((а-в)/2)*tgα; А боковая сторона - это гипотенуза в том же треугольнике, она равна прилежащему катету, деленному на косинус угла альфа. т.е. (а-в)/(2*cosα)