При пересечении двух параллельных прямых третьей секущей сумма внутренних односторонних углов равна 180° Всего мы получаем две пары внутренних односторонних углов: <1 и <2, <3 и <4 Причем <1 + <2 = 180° <3 + <4 = 180° Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360° Нам известна сумма трех углов. Найдем четвертый угол: 360° - 235° = 125° Допустим, это <1. Тогда <2 = 180°-125°=55° <2 и <3 - накрест лежащие, по свойству параллельных прямых они равны <2 = <3 = 55° <4 и <1 - также накрест лежащие, следовательно <4 = 125°
Задайте вектор m , начало и конец которого лежат в вершинах тетраэдра АВСD и выполняется следующее условие вектор
АС=АВ-m-СD
Объяснение:
Векторам присущи свойства которые позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым :
АС=АВ-m-СD,
m=АВ-СD-АС,
m=АВ-АС-СD . По правилу вычитания векторов (оба вектора выходят из общей точки А , стрелка разности к уменьшаемому) АВ-АС =СВ;
m=СВ-СD , и снова правило вычитание векторов , тк они выходят из общей точки С ,
m=DВ.
В таких задачах даже чертеж не нужен.
Всего мы получаем две пары внутренних односторонних углов:
<1 и <2, <3 и <4
Причем
<1 + <2 = 180°
<3 + <4 = 180°
Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360°
Нам известна сумма трех углов. Найдем четвертый угол:
360° - 235° = 125°
Допустим, это <1. Тогда <2 = 180°-125°=55°
<2 и <3 - накрест лежащие, по свойству параллельных прямых они равны
<2 = <3 = 55°
<4 и <1 - также накрест лежащие, следовательно
<4 = 125°