Хорда окружности делится пополам её диаметром. докажите, что либо эта хорда перпендикулярна данному диаметру, либо она сама проходит через центр окружности.
Найти длины сторон треугольника АВС: АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны стороны равны между собой, тогда АВ = ВС.
Пусть длина стороны АВ равна 2 * х сантиметров, тогда длина стороны АС = 3 * х сантиметров. Нам известно, что периметр АВС равен 28 сантиметров. Составляем уравнение:
Объяснение:
Все задачи решаются через площади треугольников: S(△)=1/2*a*h; S=√p(p-a)(p-b)(p-c); и параллелограмма: S(пар)=a*h
1) S=1/2*16*12=96; с - гипотенуза, с=√(16²+12²)=√(256+144)=20
S=1/2*c*h; h=96*2/20=9.6
2) Если принять, что там дан параллелограмм (в условии этого не сказано, но по-другому я не знаю как решить), то
S(пар)=2*3=6 (через сторону равную 3 и высоту равную 2)
S(пар)=5*h (через другую сторону и искомую высоту) => h=6/5=1.2
3) p=(a+b+c)/2=34
S=√34(34-17)(34-25)(34-26)=√34*17*9*8=204
S=1/2*26*h; h=2*204/26=204/13=15 9/13 (примерно 15,69)
4) a - катет, а=√(25²-20²)=15
S=1/2*15*20=150
S=1/2*25*h; h=2*150/25=12
8 сантиметров; 8 сантиметров; 12 сантиметров.
Объяснение:
Дано:
АВС — равнобедренный треугольник,
АВ : АС = 2 : 3,
периметр АВС равен 28 сантиметров.
Найти длины сторон треугольника АВС: АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны стороны равны между собой, тогда АВ = ВС.
Пусть длина стороны АВ равна 2 * х сантиметров, тогда длина стороны АС = 3 * х сантиметров. Нам известно, что периметр АВС равен 28 сантиметров. Составляем уравнение:
2 * х + 2 * х + 3 * х = 28;
7 * х = 28;
х = 28 : 7;
х = 4 сантиметров;
2 * 4 = 8 сантиметров — длина АВ и ВС;
3 * 4 = 12 сантиметров — длина АС.