Плоскость, параллельная основанию, отсекает от большого конуса малый конус, причем из соотношения 1:2 следует, что высота малого конуса h мал = h, тогда высота большого конуса h бол = 3h. Точно так же радиусы оснований этих конусов Rмал = R, а R бол = 3R. Соотношение радиусов приводит к соотношению площадей основания большого и малого конусов: S мал = S, а S бол = 9S. Объём малого конуса равен: V мал = 1/3 S мал · h мал илиV мал = 1/3 S·h Объём большого конуса равен V бол = 1/3 S бол · h бол илиV бол = 1/3 · 9S · 3h = 1/3 · 27S·h Очевидно, что объём малого конуса в 27 раз меньше объёма большого конуса, т.е. V мал = V бол : 27 = 135 : 27 = 5 ответ: Объём отсечённого конуса равен 5
Треугольник АВС. Высоты АК (к ВС) и ВЗ (к АС) . О-точка пересения. ВО=2х, ОР=х Треугольник ВОК. Угол ВОК=60 град. ОК перпендикулярно ВС, значит угол ОВК=90-60=30 град. Против угла в 30 град лежит сторона, равная 1/2 гипотенузы. ВО=2х, значит ОК=2х/2=х. Аналогично рассмотрев треугольник АОР, находим, что ОР=х. Значит треугольники АОР и ВОК равны, АО=ОВ, АР=ВК, КС=РС. Так же рассуждая, можно из С через точку О провести прямую до пересечения с АВ. Все рассуждения аналогичны. Таким образом АВ=ВС=АС.
Соотношение радиусов приводит к соотношению площадей основания большого и малого конусов: S мал = S, а S бол = 9S.
Объём малого конуса равен: V мал = 1/3 S мал · h мал илиV мал = 1/3 S·h
Объём большого конуса равен V бол = 1/3 S бол · h бол илиV бол = 1/3 · 9S · 3h = 1/3 · 27S·h
Очевидно, что объём малого конуса в 27 раз меньше объёма большого конуса, т.е. V мал = V бол : 27 = 135 : 27 = 5
ответ: Объём отсечённого конуса равен 5
Треугольник ВОК. Угол ВОК=60 град. ОК перпендикулярно ВС, значит угол ОВК=90-60=30 град. Против угла в 30 град лежит сторона, равная 1/2 гипотенузы. ВО=2х, значит ОК=2х/2=х. Аналогично рассмотрев треугольник АОР, находим, что ОР=х. Значит треугольники АОР и ВОК равны, АО=ОВ, АР=ВК, КС=РС. Так же рассуждая, можно из С через точку О провести прямую до пересечения с АВ. Все рассуждения аналогичны. Таким образом АВ=ВС=АС.