Из точки вне плоскости проведены две равные наклонные под углом 60 градусов к плоскости. проекции наклонных равны по 10 см. угол между самими наклонными 60 градусов. определить расстояние между концами наклонных
а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
ответ. АВ = ВС.
Площадь полной поверхности конуса равна 200π см, а его образующая - 17 см. Найдите объём конуса.
Полная поверхность конуса состоит из площади боковой поверхности и площади основания.
S = Sб + S₀ = πRL + πR² , где R - радиус основания, L - образующая
200π = πR · 17 + πR² | : π
R² + 17R - 200 = 0
D = 17² + 4 · 200 = 1089 = 33²
R₁ = (-17 + 33) : 2 = 8 см
R₂ = (-17 - 33) : 2 = -25 - не подходит по условию
Высота h, радиус основания R и образующая конуса L - это прямоугольный треугольник. Теорема Пифагора
h² = L² - R² = 17² - 8² = (17 - 8)(17 + 8) = 9·25
h = √(9·25) = 3·5 = 15 см
Объём конуса
см³
ответ: 320π см³