Kінці відрізка ab лежать у двох перпендикулярних площинах. 3найдіть відстань між основами перпендикулярів, проведених із точок а і b до лінії перетину площин, якщо довжина аb - а і він утворює з площинами кути 30 і 45 градусів
1. Угол будет равен 36°. Т. к. а||b, третья прямая секущая, а углы соответственные
2. Т. к. a||b, третья прямая секущая, то углы будут равны по 90° как соответственные. Верхний угол делит биссектриса, полученные углы будут по 45°
3. Т. к. a||b, То соответственные углы будут по 108°. Два правых угла смежные, в сумме дают 180°, зн. 180° - 108° = 72°
7. Т. к. a||b, с - секущая, то внутренние накрест лежащие углы будут по 130°. Один из них образует с другим смежный, который равен 50°. Искомый угол будет для него вертикальным и равен ему, 50°
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
1. Угол будет равен 36°. Т. к. а||b, третья прямая секущая, а углы соответственные
2. Т. к. a||b, третья прямая секущая, то углы будут равны по 90° как соответственные. Верхний угол делит биссектриса, полученные углы будут по 45°
3. Т. к. a||b, То соответственные углы будут по 108°. Два правых угла смежные, в сумме дают 180°, зн. 180° - 108° = 72°
7. Т. к. a||b, с - секущая, то внутренние накрест лежащие углы будут по 130°. Один из них образует с другим смежный, который равен 50°. Искомый угол будет для него вертикальным и равен ему, 50°
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.