К прямой АВ проведены в разные полуплоскости перпендикуляры АМ и ВК. Отрезки МК и АВ пересекаются в точке О. Доказать, что треугольник АОМ=треугольнику ВОК, если известно, что АМ=ВК.(Только с применением признаков равенства прямоугольных треугольников)
уголС=90, уголА=60, уголВ=90-60=30, АС=12, АВ=2АС=2*12=24, ВМ=4, АМ=АВ-ВМ=24-4=20, КМ перпендикулярна АВ (точка К на продолжении АС), треугольник АМК прямоугольный, уголАКМ=90-уголА=90-60=30, АМ=20=катет, АК гипотенуза=2*АМ=2*20=40, СК=АК-АС=40-12=28.
2)Из прямоугольных треугольников ВАА1 и АСС1 имеем угол А = углу В. Треугольник АВС равнобедренный. СС1 - биссектриса=высота. А расстояние от любой точки биссектрисы до сторон угла одинаковые. Т.е. тоска О одинаково удалена от АС, ВС и АВ. , но в то же время СС1 и АА1 - высоты. Т.е. треугольник АВС - равносторонний. Периметр его равен 6 см.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)