Кпрямой ав проведены в разные полуплоскости перпендикуляры ам и вк. отрезки мк и ав пересекаются в точке о. доказать, что треугольник аом=треугольнику вок, если известно, что ам=вк.
По условию АМ и ВК - перпендикуляры. Две прямые, перпендикулярные к третьей, не пересекаются, значит AMIIBK. <AMK=<MKB как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей МК. <MAO=<OBK=90° по условию АМ=ВК по условию Значит, треугольники АОМ и ВОК равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника.
AMIIBK.
<AMK=<MKB как накрест лежащие углы при пересечении двух параллельных прямых АМ и ВК секущей МК.
<MAO=<OBK=90° по условию
АМ=ВК по условию
Значит, треугольники АОМ и ВОК равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника.