Две прямые, заданные уравнениями и , будут перпендикулярны тогда и только тогда, когда . Коэффициенты и называются угловыми коэффициентами. Мы имеем диагональ , которая лежит на прямой . Приведём уравнение этой прямой в нужный нам вид: . Здесь угловой коэффициент равен . Пусть диагональ лежит на прямой .Тогда, т.к. диагонали в квадрате перпендикулярны, , откуда . Т.е диагональ лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Исходя из этого составим уравнение: , откуда . Мы получили уравнение прямой, на которой лежит диагональ - это прямая или, что то же самое, .
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями и , пересекаются под углом , тангенс которого равен . Причём при они перпендикулярны. Угол между диагональю и смежной стороной в квадрате равен . Пусть сторона лежит на прямой . Получается, нам нужно, чтобы прямая при пересечении с прямой образовывала угол в . (А сторона лежит на прямой .) Исходя из всего этого, составим и решим уравнение:
Мы получили, что сторона лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Получаем, что , откуда . Значит, сторона лежит на прямой .
Найдём координаты вершины - это точка пересечения диагонали и стороны :
Получили координаты вершины
Пусть прямая, на которой лежит сторона , имеет вид . Она перпендикулярна прямой, на которой лежит сторона . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона :
Получили, что сторона лежит на прямой .
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона :
Получили уравнение : .
Найдём координаты точки :
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD:
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Мы имеем диагональ , которая лежит на прямой . Приведём уравнение этой прямой в нужный нам вид:
.
Здесь угловой коэффициент равен .
Пусть диагональ лежит на прямой .Тогда, т.к. диагонали в квадрате перпендикулярны, , откуда . Т.е диагональ лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Исходя из этого составим уравнение: , откуда . Мы получили уравнение прямой, на которой лежит диагональ - это прямая или, что то же самое, .
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями и , пересекаются под углом , тангенс которого равен . Причём при они перпендикулярны.
Угол между диагональю и смежной стороной в квадрате равен . Пусть сторона лежит на прямой . Получается, нам нужно, чтобы прямая при пересечении с прямой образовывала угол в . (А сторона лежит на прямой .)
Исходя из всего этого, составим и решим уравнение:
Мы получили, что сторона лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Получаем, что , откуда . Значит, сторона лежит на прямой .
Найдём координаты вершины - это точка пересечения диагонали и стороны :
Получили координаты вершины
Пусть прямая, на которой лежит сторона , имеет вид . Она перпендикулярна прямой, на которой лежит сторона . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона :
Получили, что сторона лежит на прямой .
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона :
Получили уравнение : .
Найдём координаты точки :
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD:
Получили, что сторона лежит на прямой
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Объяснение: