трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметр МКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадь МКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36
Свойства правильного (равностороннего) треугольника: "В равностороннем треугольнике все углы равны между собой и равны 60°. В равностороннем треугольнике высоты являются и медианами, и биссектрисами. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают. Точка пересечения серединных перпендикуляров - центр описанной окружности.
Определение: "Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике".
Следовательно, векторы ОА, ОВ и ОС - радиусы описанной около правильного треугольника окружности.
ОА=ОВ=ОС = R.
Сумма векторов ОВ + ОС = OD (по правилу сложения).
<BOC = 120°, <OBD = 60°.
|OD| = √(OA²+OC² - 2*OA*OCCos60°) или
|OD| = √(R²+R² - 2*R²*1/2) = R.
<BOD = 60°, <AOB = 120°. <BOD + <AOB = 180°.
Следовательно, AOD - развернутый угол, векторы ОА и OD равны по модулю и направлены в противоположные стороны. Сумма таких векторов равна нулю, значит сумма векторов ОА+ОВ+ОС = 0, что и требовалось доказать.
1. ABCD-трапеция:AB=CD.
BC=5см;AC=17см;AB=10см.
Найти:S.
Решение:1.Рассмотрим ABCD-трапецию:AB=CD.
Проведем BB1 и CC1 -высоты.
AB1=AC1=(AD-B1C1)/2=(17-5)/2=6(см).
2.Рассмотрим ΔABB1:<B1=90градусов.
По те-ме Пифагора:BB1²=AB²-AB1²=10²-6²=100-36=64.
BB1=8см.
3.S=((BC+AD)/2)*BB1=((5+17)/2)*8=88(см²).
ответ:88 см². (рисунок сделаешь сам, он не сложный)
2. Параллелограмм АВСД, АК=7, КД=15, АД=7+15=22, треугольник АВК прямоугольный равнобедренный, уголВ=90-уголА=90-45=45, угол А=угол АВК, АК=ВК=7, площадь АВСД=АД*ВК=22*7=154
трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметр МКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадь МКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36
Объяснение:
Объяснение:
Свойства правильного (равностороннего) треугольника: "В равностороннем треугольнике все углы равны между собой и равны 60°. В равностороннем треугольнике высоты являются и медианами, и биссектрисами. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают. Точка пересечения серединных перпендикуляров - центр описанной окружности.
Определение: "Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике".
Следовательно, векторы ОА, ОВ и ОС - радиусы описанной около правильного треугольника окружности.
ОА=ОВ=ОС = R.
Сумма векторов ОВ + ОС = OD (по правилу сложения).
<BOC = 120°, <OBD = 60°.
|OD| = √(OA²+OC² - 2*OA*OCCos60°) или
|OD| = √(R²+R² - 2*R²*1/2) = R.
<BOD = 60°, <AOB = 120°. <BOD + <AOB = 180°.
Следовательно, AOD - развернутый угол, векторы ОА и OD равны по модулю и направлены в противоположные стороны. Сумма таких векторов равна нулю, значит сумма векторов ОА+ОВ+ОС = 0, что и требовалось доказать.