1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
Сумма оснований трапеции = 12+6=18 CM
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)