Пусть ВС = х м, тогда АС=3х м, так как сторона АВ=10 м, и периметр нам известен 24 м, то составляем уравнение: х+3х+10=24 4х=14 х=3,5 (м) - ВС АС=10,5 (м) - наибольшая сторона Итак, стороны относятся как 3,5:10:10,5, сумма углов треугольника равна 180 градусов, след углы должны быть в том же соотношении что и стороны. 3,5+10,5+10=24 всего частей 180:24=7,5 град в одной части. угол С=7,5*10=75 град (на всякий случай) угол А=7,5*3,5=26,25 град = 26 град 15 минут (на всякий случай) угол В= 7,5* 10,5=78,75 град= 78 градусов 45 минут наибольший, так как лежит против большей стороны.
Объяснение:
1
a)М-середина
х=(5-3)/2=1 y=(-2+4)/2=1 z=(1+7)/2=4
M(1;1;4)
b)5=(x-3)/2⇒x-3=10⇒x=13
-2=(y+4)/2⇒y+4=-4⇒y=-8
1=(z+7)/2⇒z+7=2⇒z=-5
C(13;-8;-5)
2
a+b={1;-4;1}
|a+b|=√1+16+1=√18=3√2
|a|+|b|=√4+36+9+√1+4+4=√49+√9=7+3=10
3
AB=√(1-2)²+(-5-1)²+(0+8)²=√1+36+64=√101
BC=√(8-1)²+(1+5)²+(-4-0)²=√49+36+16=√101
AC=√(8-2)²+(1-1)²+(-4+8)²=√36+0+16=√52=2√13
AB=BC- треугольник равнобедренный
Средняя линия равна 1/2АС=1/2*2√13=√13
Пусть N(x;y;z)- произвольная точка плоскости.
Тогда векторы NM и n - ортогональны.
Условием ортогональности является равенство нулю их скалярного произведения.
Находим координаты векторов.
NM (2-x;3-y;5-z)
n(4;3;2)
Находим их скалярное произведение - это сумма произведений одноименных координат
4(2-х)+3(3-у)+2(5-z)
и приравниваем к нулю
4(2-х)+3(3-у)+2(5-z) =0
или
8-4х+9-3у+10-2z=0
4x+3y+2z-27=0
ответ. 4х+3у+2z-27=0
Подробнее - на -
х+3х+10=24
4х=14
х=3,5 (м) - ВС
АС=10,5 (м) - наибольшая сторона
Итак, стороны относятся как 3,5:10:10,5, сумма углов треугольника равна 180 градусов, след углы должны быть в том же соотношении что и стороны.
3,5+10,5+10=24 всего частей
180:24=7,5 град в одной части.
угол С=7,5*10=75 град (на всякий случай)
угол А=7,5*3,5=26,25 град = 26 град 15 минут (на всякий случай)
угол В= 7,5* 10,5=78,75 град= 78 градусов 45 минут наибольший, так как лежит против большей стороны.