для вписанной окружности:
центр ---пересечение биссектрис углов треугольника
т.к. одна из биссектрис (проведенная к основанию (а)) ---медиана и высота, можно записать по определению тангенса: r / (a/2) = tg(альфа/2)
r = (a/2) * tg(альфа/2)
для описанной окружности: R = a / (2sin(180-2альфа)) = a / (2sin(2альфа))
r/R = a * tg(альфа/2) * 2sin(2альфа) / (2*a) = sin(2альфа)*tg(альфа/2)
можно еще немного сократить...
sin(2a) = 2sin(a)*cos(a) = 4sin(a/2)*cos(a/2)*cos(a)
r/R = 4cos(a)*(sin(a/2))^2 (здесь а---угол альфа)
5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.
для вписанной окружности:
центр ---пересечение биссектрис углов треугольника
т.к. одна из биссектрис (проведенная к основанию (а)) ---медиана и высота, можно записать по определению тангенса: r / (a/2) = tg(альфа/2)
r = (a/2) * tg(альфа/2)
для описанной окружности: R = a / (2sin(180-2альфа)) = a / (2sin(2альфа))
r/R = a * tg(альфа/2) * 2sin(2альфа) / (2*a) = sin(2альфа)*tg(альфа/2)
можно еще немного сократить...
sin(2a) = 2sin(a)*cos(a) = 4sin(a/2)*cos(a/2)*cos(a)
r/R = 4cos(a)*(sin(a/2))^2 (здесь а---угол альфа)
5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.