Проведем отрезок BM, соединяющий вершину треугольника с точкой пересечения биссектрис. Биссектрисы треугольника пересекаются в одной точке, тогда отрезок BM является частью биссектрисы ∠B в ∆ABC, значит, ∠ABM = ∠CBM.
Так как AM – биссектриса ∠A, то ∠BAM = ∠MAC, тогда находим ∠A.
∠A = ∠BAM + ∠MAC = 30° + 30° = 60°.
Аналогично, так как CM – биссектриса ∠C, то ∠BCM = ∠ACM, тогда находим ∠С.
Треугольники АМК и ВМС подобны за равными углами ∠М - общий ∠КАМ=∠МВС( ВСпаралельно АК углы КАВ и АВХ внутренние разносторонние а ∠АВХ=∠МВС- как вертикальные Углы АКС и МСВ равны аналогично ВС паралельно АК ∠АКСи∠КСУ равны как внутренние разносторонние а ∠КСУ=∠МСВ как вертикальные (ВС прслева от В на прямой ВС поставь Х а справа от С точку у) Треугольники подобны значит соответствующие стороны этих треугольников пропорциональны составим пропорцию АМ АМ/BM=AK/BC AM=AB+BM=4+8=12 12/8=18/BCза основным свойством пропорции произведение крайних членов равно произведению средних BC·12=8·18 ВС=8·18/12 BC=12
Проведем отрезок BM, соединяющий вершину треугольника с точкой пересечения биссектрис. Биссектрисы треугольника пересекаются в одной точке, тогда отрезок BM является частью биссектрисы ∠B в ∆ABC, значит, ∠ABM = ∠CBM.
Так как AM – биссектриса ∠A, то ∠BAM = ∠MAC, тогда находим ∠A.
∠A = ∠BAM + ∠MAC = 30° + 30° = 60°.
Аналогично, так как CM – биссектриса ∠C, то ∠BCM = ∠ACM, тогда находим ∠С.
∠С = ∠BCM + ∠ACM = 20° + 20° = 40°.
По теореме о сумме углов треугольника в ∆ABC:
∠A + ∠С + ∠B = 180°, следовательно ∠B = 180° – (∠A + ∠С) = 180° – (60° + 40°) = 180° – 100° = 80°.
Тогда находим ∠ABM.
∠ABM = 80° : 2 = 40°.
ответ: ∠ABM = 40°.
Углы АКС и МСВ равны аналогично ВС паралельно АК ∠АКСи∠КСУ равны как внутренние разносторонние а ∠КСУ=∠МСВ как вертикальные
(ВС прслева от В на прямой ВС поставь Х а справа от С точку у)
Треугольники подобны значит соответствующие стороны этих треугольников пропорциональны составим пропорцию АМ
АМ/BM=AK/BC AM=AB+BM=4+8=12
12/8=18/BCза основным свойством пропорции произведение крайних членов равно произведению средних
BC·12=8·18
ВС=8·18/12
BC=12