Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма А и В - односторонние
<A - напротив диагонали d1
<B=180-<A - напротив диагонали d2
cosA= - cosB=
d1^2=a^2+b^2-2ab*cosA
d2^2= a^2+b^2-2ab*cosB = a^2+b^2-2ab*(-cosA)= a^2+b^2+2ab*cosA
d1^2+d2^2 = a^2+b^2-2ab*cosA + a^2+b^2 +2ab*cosA = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
ДОКАЗАНО сумма квадратов диагоналей равна сумме квадратов (ЧЕТЫРЕХ)сторон
9
10
11
12
13
Вроде это, Заранее незочто
Условие задачи некорректно составлено.
Объяснение:
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).