Основание пирамиды ‒ прямоугольный треугольник ACВ, где AC=6см и sin 0,8 A . Все боковые ребра наклонены к плоскости основания под углом 60(градусов . Найдите высоту и объём пирамиды.
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
(а) Площадь пола команды считаем в см 250х150=37500 см кв.
Считаем площадь одной плитки 30х30=900 см кв
ПЛ пола делим на ПЛ плитки 37500/900=41.666, округляем 42 плитки
(б) 3,2 (м) = 3,2*100 = 320 (см).
2,5 (м) = 2,5*100 = 250 (см).
Площадь прямоугольника равна произведению его смежных сторон.
Так как стена имеет форму прямоугольника, то его площадь равна -
250 (см)*320 (см) = 80000 (см²).
А площадь одной прямоугольной плитки равна -
20 (см)*10 (см) = 200 (см²).
Чтобы найти число плиток, площадь стенки разделим на площадь одной плитки -
80000 (см²) : 200 (см²) = 400 (плиток).
400 плиток.
, а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой.
Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое:
Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой
В равностороннем - то же рассуждение для любой стороны.
.