Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
sinACA1=12/13 =sinBDB1
BB1=BD*sinBDB1=39*(12/13)=36
2) a) Проведём СЕ⊥АВ и DE⊥AB.
АЕ=ВЕ=1/2*АВ=1/2*16=8 , т.к. АВС - равнобедренный, Е - середина АВ.
DE - тоже высота , медиана и биссектриса, т.к. АВD - равнобедренный, AD=BD.
СЕ²=АС²-АЕ²=17²-8²=225 , СЕ=15
∠ADB=90° по условию, ∠BDE=45° ⇒ ∠DBE=45° ⇒ ΔBDE - равнобедренный, DE=BE=8 .
ΔCDE: CE⊥AB и DE⊥AB ⇒ ∠CED=60° ,
CD²=CE²+DE²-2*CE*DE*cos60°=15²+8²-2*15*8*0,5=169
CD=13
б) ∠СD=180°-60°=120° ⇒
CD²=15²+8²-2*15*8*cos120°=15²+8²+2*15*8*0,5=409
CD=√409
ответ: 13 или √409.