По определению параллелограмма BC∥AD, а прямая BD является их секущей. По свойству секущей ∠ADB=∠DBC=45°. ΔABD по определению равнобедренный, и имеет основание AD, а поскольку в равнобедренных треугольниках углы при основании равны, ∠BAD=45°. По свойству углов параллелограмма при стороне, ∠ABС=135° => ∠ABD=90°. Соответственно, по свойству противоположных углов параллелограмма, ∠BDC=90° и ∠BCD=45°. Проведём высоту DH к стороне BC в треугольнике ΔBDC. Поскольку он равнобедренный, его высота совпадает с медианой и биссектрисой, то есть DH=BH=CH=a и ∠BDH=∠CDH=∠BDC/2=45°. ΔDHC равнобедренный и прямоугольный, а, значит, по теореме Пифагора, 2a²=CD²=18² => a=9√2. BC=BH+CH=2a, DH=a BC - основание параллелограмма, а DH - его высота. Площадь параллелограмма равна их произведению по одной из расчётных формул, то есть BC*DH=2a²=18²=324
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. Рассмотрим треугольник АВС. Угол СВН - внешний угол при вершине, противоположной основанию. BM- биссектриса этого угла. Она делит угол на два равных угла 1 и 2. Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. Углы под номером 1-равные соответственные при прямых АС и Bм и секущей АВ Углы под номером 2 -равные накрестлежащие при прямых АС и ВМ и секущей ВС Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
324
Объяснение:
По определению параллелограмма BC∥AD, а прямая BD является их секущей. По свойству секущей ∠ADB=∠DBC=45°. ΔABD по определению равнобедренный, и имеет основание AD, а поскольку в равнобедренных треугольниках углы при основании равны, ∠BAD=45°. По свойству углов параллелограмма при стороне, ∠ABС=135° => ∠ABD=90°. Соответственно, по свойству противоположных углов параллелограмма, ∠BDC=90° и ∠BCD=45°. Проведём высоту DH к стороне BC в треугольнике ΔBDC. Поскольку он равнобедренный, его высота совпадает с медианой и биссектрисой, то есть DH=BH=CH=a и ∠BDH=∠CDH=∠BDC/2=45°. ΔDHC равнобедренный и прямоугольный, а, значит, по теореме Пифагора, 2a²=CD²=18² => a=9√2. BC=BH+CH=2a, DH=a BC - основание параллелограмма, а DH - его высота. Площадь параллелограмма равна их произведению по одной из расчётных формул, то есть BC*DH=2a²=18²=324
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. Рассмотрим треугольник АВС. Угол СВН - внешний угол при вершине, противоположной основанию. BM- биссектриса этого угла. Она делит угол на два равных угла 1 и 2. Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. Углы под номером 1-равные соответственные при прямых АС и Bм и секущей АВ Углы под номером 2 -равные накрестлежащие при прямых АС и ВМ и секущей ВС Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.