Всего образовалось 8 углов, по 4 равных между собой.
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой. ∠1=∠2=102°:2=51° И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — выпуклый.
Каждый угол четырёхугольника в 2 раза больше предыдущего.
Найти:Меньший угол четырёхугольника (∠А) = ?
Решение:▷ Сумма углов любого четырёхугольника равна 360° ◁
Для удобства расчёта возьмём ∠А за х.
Тогда, по условию задачи —
▸ ∠В = 2*∠А = 2х.
▸ ∠С = 2*∠В = 2*2х = 4х.
▸ ∠D = 2*∠C = 2*4x = 8x.
Логично, что ∠А — меньший угол, так как мы его брали за х.
Составим линейное уравнение и найдём значение х —
∠А+∠В+∠С+∠D = 360°
х+2х+4х+8х = 360°
15х = 360°
х = 24°.
∠А = х = 24°.
ответ:24°.
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой.
∠1=∠2=102°:2=51°
И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
ответ. 51° и 129°.