Прямую 5x-2y=-12 надо представить в виде y=f(x). Т.е. y = 2.5x+6. Чтобы найти координаты, в которых функция пересекает ось Y надо подставить x=0. y = f(0) = 2.5*0+6 = 6. ⇛ Эта прямая пересекает ось ординат (Y) в точке (0;6) Тоже самое с осью абсцисс (X), теперь уже Y приравняем к 0: f(x) = 2.5x+6 = 0 ⇒ x = -2.4 ⇛ Эта прямая пересекает ось абсцисс (X) в точке (-2.4;0)
Ну теперь с точкой A(-2;7), подставляем значение X и Y: y = 2.5x+6 ⇒ 7 = 2.5 * (-2) + 6. Считаем: 2.5 * (-2) + 6 = 1, а 1 ≠ 7. Значит точка A(-2;7) не принадлежит прямой 5x-2y=-12.
Вообще-то эта задача в уме решается. Обязательно разберись с этой темой!
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
Т.е. y = 2.5x+6.
Чтобы найти координаты, в которых функция пересекает ось Y надо подставить x=0.
y = f(0) = 2.5*0+6 = 6. ⇛ Эта прямая пересекает ось ординат (Y) в точке (0;6)
Тоже самое с осью абсцисс (X), теперь уже Y приравняем к 0:
f(x) = 2.5x+6 = 0 ⇒ x = -2.4
⇛ Эта прямая пересекает ось абсцисс (X) в точке (-2.4;0)
Ну теперь с точкой A(-2;7), подставляем значение X и Y:
y = 2.5x+6 ⇒ 7 = 2.5 * (-2) + 6.
Считаем:
2.5 * (-2) + 6 = 1, а 1 ≠ 7.
Значит точка A(-2;7) не принадлежит прямой 5x-2y=-12.
Вообще-то эта задача в уме решается. Обязательно разберись с этой темой!
2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС.
cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС.
3. Площадь треугольника равна половине площади прямоугольника.
S=(АС*ВД)/2