В своем письме С. Маршак размышляет о том, что грамматику изучать необходимо и полезно. Этот текст можно назвать рассуждением. Автор раскрывает тезис: «Грамматику изучать необходимо и полезно». Он приводит следующие аргументы: «Тот, кто не изучал грамматики, не знает законов языка. Он говорит более или менее правильно. Но такого человека легко сбить с толку. Он может незаметно для самого себя испортить свой язык, усвоить неправильные обороты речи. Ведь он не изучал правил русского языка и не знает, что правильно и что неправильно». Последний абзац в тексте является выводом. Убедительное доказательство содержится в предпоследнем абзаце: «Склонять, спрягать, соединять отдельные слова в предложения такой человек научился бессознательно, как научился ходить. Этого знания языка ему хватает для выражения самых простых мыслей. Но когда ему понадобится выразить мысль сложную, требующую пояснений и дополнений, − вот тогда ему трудно придётся, если он не знает законов языка».
Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
В своем письме С. Маршак размышляет о том, что грамматику изучать необходимо и полезно. Этот текст можно назвать рассуждением. Автор раскрывает тезис: «Грамматику изучать необходимо и полезно». Он приводит следующие аргументы: «Тот, кто не изучал грамматики, не знает законов языка. Он говорит более или менее правильно. Но такого человека легко сбить с толку. Он может незаметно для самого себя испортить свой язык, усвоить неправильные обороты речи. Ведь он не изучал правил русского языка и не знает, что правильно и что неправильно». Последний абзац в тексте является выводом. Убедительное доказательство содержится в предпоследнем абзаце: «Склонять, спрягать, соединять отдельные слова в предложения такой человек научился бессознательно, как научился ходить. Этого знания языка ему хватает для выражения самых простых мыслей. Но когда ему понадобится выразить мысль сложную, требующую пояснений и дополнений, − вот тогда ему трудно придётся, если он не знает законов языка».
Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
Поэтому Sбок = 2(3 + 4) · 6 = 2 · 7 · 6 = 84 (cм²).
Площадь полной поверхности призмы находят по формуле
Sполн = 2Sосн + Sбок.
В случае, если в основании лежит параллелограмм, то не хватает данных для нахождения площади параллелограмма.
Если же в основании лежит прямоугольник, то Sосн = ab, где a и b - его стороны.
Поэтому Sполн = 2 · 3 · 4 + 84 = 24 + 84 = 108 (см²).