Назовем угол в 90° буквой L. Соответственно, получится прямоуголный треугольник MKL. Две стороны у нас известны, а именно MK=26см (гипотенуза) и LK=10см (второй катет), по теореме Пифагора можем найти сторону ML (квадрат неизвестного катета равен разности квадрата гипотенузы и квадрата второго катета):
Из двух данных нам треугольников можно образовать один прямоугольный треугольник - MLN, у которого известна пока лишь одна сторона - ML, но можно найти вторую - LN (стороны LK и KN дадут в сумме сторону LN):
LN=LK+KN; LN=10+13; LN=23см.
Теперь у нас известны все стороны, что бы найти площадь треугольника MKN, которая расчитывается по формуле S=1/2·a·Ha, то есть одна вторая умноженная на основание и высоту, проведенную к основанию:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
Площадь треугольника MKN = 156 (см)²
Объяснение:
Назовем угол в 90° буквой L. Соответственно, получится прямоуголный треугольник MKL. Две стороны у нас известны, а именно MK=26см (гипотенуза) и LK=10см (второй катет), по теореме Пифагора можем найти сторону ML (квадрат неизвестного катета равен разности квадрата гипотенузы и квадрата второго катета):
ML²=MK²-LK²; ML²=26²-10²; ML²=676-100; ML=√576; ML=24см.
Из двух данных нам треугольников можно образовать один прямоугольный треугольник - MLN, у которого известна пока лишь одна сторона - ML, но можно найти вторую - LN (стороны LK и KN дадут в сумме сторону LN):
LN=LK+KN; LN=10+13; LN=23см.
Теперь у нас известны все стороны, что бы найти площадь треугольника MKN, которая расчитывается по формуле S=1/2·a·Ha, то есть одна вторая умноженная на основание и высоту, проведенную к основанию:
Smnk=1/2·13·24=1/2·312=156 см²
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см