а) Выразим у через х.
3х + 2у - 9 = 0, у + 3 = 0
у = - 1,5х + 4,5 у = - 3 (1)
Для построения первой прямой возьмем два произвольных значения х и вычислим для них соответствующие значения у:
x = 1, y = - 1,5 + 4,5 = 3
x = 3, y = - 1,5 · 3 + 4,5 = 0
Через точки (1; 3) и (3; 0) проведем прямую.
Для построения второй прямой на координатной плоскости отметим точку у = -3 и начертим через эту точку прямую, параллельную оси Ох.
б) Приравняем правые части двух уравнений (1):
- 1,5х + 4,5 = - 3,
х = 5 - абсцисса точки пересечения.
Подставим это значение в уравнение прямой и найдем ординату точки пересечения:
у = - 1,5 · 5 + 4,5 = - 3.
Координаты точки пересечения равны (5; - 3).
в) Треугольник АВС, площадь которого нам нужно отыскать, прямоугольный,
АВ = 4,5 + 3 = 7,5
ВС = 5
Sabc = 1/2 AB · BC = 1/2 · 7,5 · 5 = 18,75 кв. ед.
а) Выразим у через х.
3х + 2у - 9 = 0, у + 3 = 0
у = - 1,5х + 4,5 у = - 3 (1)
Для построения первой прямой возьмем два произвольных значения х и вычислим для них соответствующие значения у:
x = 1, y = - 1,5 + 4,5 = 3
x = 3, y = - 1,5 · 3 + 4,5 = 0
Через точки (1; 3) и (3; 0) проведем прямую.
Для построения второй прямой на координатной плоскости отметим точку у = -3 и начертим через эту точку прямую, параллельную оси Ох.
б) Приравняем правые части двух уравнений (1):
- 1,5х + 4,5 = - 3,
х = 5 - абсцисса точки пересечения.
Подставим это значение в уравнение прямой и найдем ординату точки пересечения:
у = - 1,5 · 5 + 4,5 = - 3.
Координаты точки пересечения равны (5; - 3).
в) Треугольник АВС, площадь которого нам нужно отыскать, прямоугольный,
АВ = 4,5 + 3 = 7,5
ВС = 5
Sabc = 1/2 AB · BC = 1/2 · 7,5 · 5 = 18,75 кв. ед.
Дано:
ABCD — прямоугольник,
AC ∩ BD=O,
∠AOD=φ.
Найти: ∠ACD.
Решение:
1) ∠DOC=180º-∠AOD=180º-φ (как смежные).
ugol mezhdu diagonalyami pryamougolnika raven
2) Треугольник COD — равнобедренный с основанием CD
(OC=OD по свойству диагоналей прямоугольника).
Тогда
\[\angle OCD = \frac180}^o} - \angle AOD}}{2} = \frac180}^o} - ({{180}^o} - \varphi )}}{2} = \]
\[ = \frac180}^o} - {{180}^o} + \varphi }}{2} = \frac{\varphi }{2}.\]
(как угол при основании равнобедренного треугольника).
\[\angle ACD = \angle OCD = \frac{\varphi }{2}.\]
ответ: φ/2.
ugol mezhdu diagonalyu i storonoy pryamougolnika
Около любого прямоугольника можно описать окружность. Центр описанной около прямоугольника окружности — точка пересечения его диагоналей.
∠ACD — вписанный угол, ∠AOD — соответствующий ему центральный угол. Следовательно,
∠ACD=½ ∠AOD=φ/2.
Задача 2. (обратная к задаче 1)
Угол между диагональю прямоугольника и его большей стороной равен α. Найти меньший угол между диагоналями прямоугольника.
ugol mezhdu diagonalyu i storonoy pryamougolnika
1) Треугольник COD — равнобедренный с основанием CD
(так как OC=OD по свойству диагоналей прямоугольника).
Угол при вершине равнобедренного треугольника
∠COD=180º-2∠OCD=180º-2α.
2) ∠AOD=180º-∠COD (как смежные),
∠AOD=180º-(180º-2α)=180º-180º+2α=2α.
ответ: 2α.
Вывод: острый угол между диагоналями прямоугольника в два раза больше угла между диагональю прямоугольника и его большей стороной.