Заданное ГМТ соответствует параболе - это геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d, не проходящей через заданную точку.
Поэтому точка Мо и есть фокус параболы, а прямая у = 4 её директрисой.
Расстояние от фокуса до директрисы равно параметру параболы "р" и равно 7 - 4 = 3.
Вершина параболы находится посередине между фокусом и директрисой. Для нашей задачи получаем координаты вершины:
(-1; 5,5).
Так как директриса параллельна оси Ох, то ось параболы параллельна оси Оу. Уравнение (x-xо)^2=2p(y-yо), p > 0 определяет параболу с вершиной O'(xo,yo), ось которой параллельна оси ординат.
Проведем высоту из вершины B (новая вершина Е). Получим прямоугольный треугольник. Отрезок AE = BC, так как ad : bc = 3:1. Вычислим AE по формуле AE = AB * cos ∠BAD = 8*√3/2 = 4*√3
Из этого следует BC = 4*√3, AD=12*√3 Зная все стороны находим площадь. S = (BC+AD)/2 * √AB² - (AD-BC)²/4 = 8*√3 * √64-192/4 = 32*√3 ответ: 32*√3
Второй вариант. Найдем высоту h трапеции, зная длину отрезка AE. h² + (4*√3)² = 8² h = 4 Вычисляем площадь по формуле через высоту S = (4*√3+12√3)/2*h = 32*√3 ответ: 32*√3 ответ одинаковый в двух вариантах.
Заданное ГМТ соответствует параболе - это геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d, не проходящей через заданную точку.
Поэтому точка Мо и есть фокус параболы, а прямая у = 4 её директрисой.
Расстояние от фокуса до директрисы равно параметру параболы "р" и равно 7 - 4 = 3.
Вершина параболы находится посередине между фокусом и директрисой. Для нашей задачи получаем координаты вершины:
(-1; 5,5).
Так как директриса параллельна оси Ох, то ось параболы параллельна оси Оу. Уравнение (x-xо)^2=2p(y-yо), p > 0 определяет параболу с вершиной O'(xo,yo), ось которой параллельна оси ординат.
Все данные для уравнения мы определили.
ответ: уравнение параболы (x + 1)² = 2*3(y - 5.5).
Вычислим AE по формуле AE = AB * cos ∠BAD = 8*√3/2 = 4*√3
Из этого следует BC = 4*√3, AD=12*√3
Зная все стороны находим площадь.
S = (BC+AD)/2 * √AB² - (AD-BC)²/4 = 8*√3 * √64-192/4 = 32*√3
ответ: 32*√3
Второй вариант.
Найдем высоту h трапеции, зная длину отрезка AE.
h² + (4*√3)² = 8²
h = 4
Вычисляем площадь по формуле через высоту
S = (4*√3+12√3)/2*h = 32*√3
ответ: 32*√3
ответ одинаковый в двух вариантах.