МР=АС:2, MN=BC:2, PN=AB:2, МР, PN и MN- средние линии ∆ АВС. ⇒ ∆ ВМР и ∆ АВС подобны ( легко докажете сами) Коэффициент подобия k=1/2 Площади подобных треугольников относятся как квадрат коэффициента подобия. S1:S=k²=1/4 Тогда S∆ ABC=48*4=192 Пусть коэффициент отношения сторон ∆АВС будет а. Тогда АВ=ВС=5а, АС=6а Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a. Найдем по т.Пифагора высоту: BN=√(AB²-AN²)=√16a²=4a По формуле площади треугольника S ∆ ABC=4a*6a:2=12a² 12a²=192 a²=16 a=√16=4 P=5а+5а+6а=16а Р=16*4=64 ------- Можно площадь ∆ АВС найти несколько иначе: МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192
Отметьте все верные утверждения:
а) Если две прямые не имеют общих точек, то они параллельны.
б) Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
в) Всегда существует прямая, параллельная двум скрещивающимся прямым.
г) Две прямые из трех попарно скрещивающихся могут быть параллельными.
б)
Объяснение:
а) Неверно, прямые могут быть скрещивающимися.
б) Верно. Это признак скрещивающихся прямых.
в) Неверно, так как если бы каждая из двух скрещивающихся прямых была параллельна третьей прямой, то они были бы параллельны между собой.
г) Неверно. Попарно скрещивающиеся - это значит, что каждые две прямые скрещивающиеся, т.е. не параллельны.
∆ ВМР и ∆ АВС подобны ( легко докажете сами)
Коэффициент подобия k=1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S1:S=k²=1/4
Тогда S∆ ABC=48*4=192
Пусть коэффициент отношения сторон ∆АВС будет а.
Тогда АВ=ВС=5а, АС=6а
Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a.
Найдем по т.Пифагора высоту:
BN=√(AB²-AN²)=√16a²=4a
По формуле площади треугольника
S ∆ ABC=4a*6a:2=12a²
12a²=192
a²=16
a=√16=4
P=5а+5а+6а=16а
Р=16*4=64
-------
Можно площадь ∆ АВС найти несколько иначе:
МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192